PIXIS 成像型与光谱型相机

PIXIS 成像型与光谱型相机

参考价: 面议

具体成交价以合同协议为准
2023-02-09 17:04:25
452
产品属性
关闭
杭州谱镭光电技术有限公司

杭州谱镭光电技术有限公司

免费会员
收藏

组合推荐相似产品

产品简介

PIXIS是市场上*的一款提供全金属真空封存,深度制冷的科研级CCD相机。真空质量终生质保。高量子效率,高度集成化,低噪声设计的科学成像/光谱相机,可应用于紫外到近红外各类实验。

详细介绍

 

普林斯顿仪器(PI)的成像产品,包括:CCD相机,高速增强型ICCD,电子增益型EMCCD,高速增益emICCD,X射线相机,铟镓砷相机。我们致力于为您提供创新的方案,解决你棘手挑战性的问题。

我们坚持技术创新来为科研工作者提供高性能的成像技术,包括SOPHIA,ProEM,PI-MAX4,NIRvana等突破性的产品。

 

PIXIS 成像型与光谱型相机

行业标准,高性能CCD相机

PIXIS系列相机是集成度高,低噪声设计的科学成像/光谱相机,响应范围从紫外到近红外。结合PI*的XP制冷技术,PIXIS是市场上*的一款提供全金属真空封存,深度制冷的科研级CCD相机。真空质量终生质保。

高量子效率,超低噪声电子电路,使得PIXIS成为高要求的低光实验中理想的选择例如拉曼光谱,波什-爱因斯坦凝聚态(BEC),太阳能器件检测,荧光实验等等

PIXIS相机可以选择eXcelon镀膜技术,增加其敏感度同时抑制近红外波段的干涉现象。

image of PIXIS <br> 成像型与光谱型相机

 

PIXIS相机具有以下特点:

 支持不同芯片尺寸

 频谱响应从~ 180nm至~1100nm (紫外到近红外)波段更有eXcelon抗干涉技术eXcelon technology

 的全金属真空封存技术

 灵活的读出设置

 高速USB2.0接口

 功能强大的 64位 LightField 操作平台

 

 

产品综述

PIXIS系列相机是高度集成化,低噪声设计的科学成像/光谱相机,可应用于紫外到近红外各类实验

PIXIS系列有前照型CCD,后照型CCD,后照深耗尽型CCD,适合成像或成谱的芯片格式。每一款PyLoN相机都提供了同类相机中的敏感度,的噪声以及的动态范围   

BEC vortices

Images courtesy of Prof. Wolfgang Ketterle, MIT.

 

 

产品特点

探测范围180nm 至 1100nm:

可满足各类实验需求

可选高于95%的量子效率

紫外波段的量子效率,可选择紫外增强型CCD 或者 Unichrome/Lumogen phosphor镀膜

结合eXcelon技术,提升相机的敏感度

img3

普林斯顿仪器的真空封存技术:

终生真空质保

风冷或者水冷均可达-90

长时间曝光下的超低暗噪声

单层透射窗口增加芯片的敏感度

无需额外的维护

img4

的eXcelon技术,用于背照型CCD:

增强的灵敏度,带来更好的量子效率

减少背照式CCD的近红外干涉现象

查看更多 eXcelon 的信息

img5

 

双读出放大器:

增强的系统灵活性

高敏读出放大器具有极低的读出噪声

大动态读出放大器增加了数据深度

img6

高速USB2.0数据接口:

任何电脑直接连接,无需额外硬件

即插即用

真正的16位数据传输能力,可达2MHz读出速度

USB2

LightField的64-位操作平台:

直观易上手的用户界面设计.

内置数学引擎,实时获得图像与光谱的数据分析.

PICAM(64)位通用程序语言,方便的程序修改与编译.

与LabVIEW,MATLAB,EPICS等第三方软件无缝对接.

IntelliCal 精准的波长校准和强度校准,一键完成

img8

 

 

 

型号规格

用于成像和光谱学的PIXIS CCD相机型号比较和数据表

Imaging Models

Sensor Type

Pixel Size

Readout Amplifiers

Peak QE

512 x 512 datasheet pdf

BX, B

24 x 24 µm

single

view QE data

1024 x 1024 datasheet pdf

BRX, BR, BX, B, BUV, F

13 x 13 µm

single

view QE data

1340 x 1300 datasheet pdf

BX, B, BUV, F

20 x 20 µm

dual

view QE data

2048 x 2048 datasheet pdf

BRX, BR, BX, B, BUV, F

13.5 x 13.5 µm

dual mode

view QE data

 

Spectroscopy Models

Sensor Type

Pixel Size

Readout Amplifiers

Peak QE

1340 x 100 datasheet pdf

BRX, BR, BX, B, F

20 x 20 µm

dual

view QE data

1340 x 400 datasheet pdf

BRX, BR, BX, B, F

20 x 20 µm

dual

view QE data

2048 x 512 datasheet pdf

BX, B, BUV

13.5 x 13.5 µm

dual mode

view QE data

1024 x 252 datasheet pdf

BR, E

26 x 26 µm

single

view QE data

 

 

Imaging cameras (anchor link to table) | Spectroscopy cameras (anchor link to table)

 

Sensor Types:

 

Princeton Instruments' proprietary eXcelon process increases detector sensitivity in the blue and NIR while suppressing etalon interference fringes.

B/I DD (Back-illuminated deep depletion) sensors have up to 95% QE in the NIR with minimal etaloning.

B/I (Back-illuminated) sensors have up to 95% QE in the visible but are subject to etaloning in the NIR.

BUV (Enhanced UV) sensors offer the highest UV sensitivity with moderate visible sensitivity.

F/I (Front-illuminated) CCD sensors offer economical performance from ~400-1000 nm with up to ~50% QE and negligible etaloning. Open Electrode architecture improves QE by reducing the area of the electrodes.

 

Pixel Size:

 

All PIXIS cameras offer 99% fill factors

Larger pixels offer higher well capacity

Smaller pixels offer higher spatial resolution in some cases; for more information, see hyperlink to IsoPlane page

 

Peak QE:

 

Maximum values of quantum efficiency (QE) are n at 25° C.

 

产品应用

Tip-Enhanced Raman Spectroscopy

TERS - Tip-Enhanced Raman spectroscopy

 

Fluorescence, Phosphorescence, and Photoluminescence Spectroscopy

Fluorescence, phosphorescence and photoluminescence occur when a sample is excited by absorbing photons and then emits them with a decay time that is characteristic of the sample environment.

 

Astronomical Imaging

Astronomical imaging can be broadly divided into two categories: (1) steady-state imaging, in which long exposures are required to capture ultra-low-light-level objects, and (2) time-resolved photometry, in which integration times range from milliseconds to a few seconds.

 

General Raman

The most common application of Raman spectroscopy involves the vibrational energy levels of a molecule. Incident laser light in the UV, visible or NIR, is scattered from molecular vibrational modes.

 

Surface-Enhanced Raman Spectroscopy

SERS - Surface-enhanced Raman spectroscopy

 

Bose-Einstein Condensate

Bose-Einstein condensate (BEC) can be regarded as matter made from matter waves. It is formed when a gas composed of a certain kind of particles, referred to as “bosonic” particles, is cooled very close to absolute zero.

 

Coherent Anti-Stokes Raman Spectroscopy

Coherent Anti-Stokes Raman spectroscopy (CARS) a type of non-linear Raman spectroscopy. Instead of the traditional single laser, two very strong collinear lasers irradiate a sample.

 

Stimulated Raman Scattering

Stimulated Raman scattering takes place when an excess of Stokes photons that were previously generated by normal Raman scattering are present or are deliberately added to the excitation beam.

 

Micro-Computed Tomography

Micro Computer Tomography is a unique technique for the noninvasive, nondestructive 3D characterization of materials down to a micrometer scale.

 

上一篇:华中科技大学卢新培教授专访:等离子体技术的应用研究 下一篇:卓立汉光受邀参加2024年中国工程热物理学会燃烧学年会
提示

请选择您要拨打的电话: