奥林巴斯(中国)有限公司

仪器网五星7

收藏

知识课堂2| 全聚焦法改善相控阵超声成像!

时间:2020-05-20      阅读:2085

  引言
 
  随着可提供全聚焦方式(TFM)功能的检测设备陆续进入到市场中,无损检测(NDT)行业也在经历着一个技术进步突飞猛进的重要时期。全聚焦方式(TFM)的出现标志着相控阵超声检测(PAUT)技术又向前迈出了重要的一步。然而,一些相控阵超声检测(PAUT)的从业人员可能仍然对全聚焦方式(TFM)及其与全矩阵捕获(FMC)的关系,以及常规相控阵超声检测(PAUT)和全矩阵捕获/全聚焦方式(FMC/TFM)处理之间的差异,感到困惑。这篇文章可使那些熟悉相控阵超声检测(PAUT)成像的检测人员对全聚焦方式(TFM)成像有个基本的了解。
 
  常规相控阵超声检测(PAUT)和全聚焦方式(TFM)的基本区别
 
  在相控阵超声检测(PAUT)和全聚焦方式(TFM)检测中,都使用一个多晶片探头,在被测样件中发射脉冲超声波,并记录回波随着时间而变化的轨迹(波形)。然后,这些波形被合成处理,以生成被测样件中反射体的图像。超声波图像可被视为由众多子图像(被称为帧)堆栈在一起而生成的图像。例如:相控阵超声检测(PAUT)中的扇形扫描是由一系列以不同角度采集到的A扫描(波幅对应时间)堆栈而成。在扇形扫描的定义中,单个A扫描的作用相当于帧。相控阵超声检测(PAUT)策略就是以尽可能快的方式处理这些帧,并实时显示和刷新总体图像。常规相控阵超声检测(PAUT)和全聚焦方式(TFM)之间的基本差别在于信号采集和帧处理的策略不同。
 
常规相控阵超声检测(PAUT)成像
 
  为了演示在相控阵超声检测(PAUT)中采集帧的过程,这里我们使用一个S扫描作为示例。S扫描由众多单个的帧组成,这些帧对应于在工件中以不同角度采集到的A扫描。在采集过程中,一组晶片(被称为孔径)同时发射脉冲,并记录下声波的轨迹。延迟被应用到每个晶片,以使超声声束以所需的角度偏转,并在工件中期望的深度处聚焦。这样,每个帧就是由折射角度和聚焦深度而定义。因此,要采集的帧的总数量就是构成总体图像的不同角度的数量。相控阵超声检测(PAUT)的优点是只需要完成有限的采集量。向被测材料中发射的声束是不同单个发射器的声学波幅“物理求和”的结果,而接收声束则是由前端电子设备通过快速求和算法而获得的合成声束。因此,可以非常迅速地显示通过相控阵超声检测(PAUT)方法获得的图像。相控阵超声检测(PAUT)的缺点是所有帧都在一个恒定的深度上聚焦。位于聚焦区域之外的反射体会显得模糊不清,而且会比位于聚焦区域内的同等大小的反射体看起来更大些。全聚焦方式(TFM)技术可以解决这种显示分辨率的问题。全聚焦方式(TFM)的基本概念是在多个不同深度的聚焦线上显示波幅,换句话说就是不只在单一的深度线上聚焦,而是具有“随处聚焦”的特点,因此可以为聚焦区域内的任何位置生成高度清晰的图像。
 
  如果使用相控阵超声检测(PAUT)采集策略(获得每帧图像需要一次采集)生成全聚焦方式(TFM)图像,则所需的时间就会显著增加。生成一个全聚焦方式(TFM)图像所需的像素数量比生成一个S扫描所需的不同角度的数量高得多。例如:通过以100个不同角度进行扫查而获得的一个S扫描需要100次采集,而由100 × 100像素构建的全聚焦方式(TFM)图像则需要10000次采集。为了避免这个采集数量过多的问题,我们可以使用另一种采集策略,这种策略是在后处理过程中计算出帧。这种采集策略需要一组对应于每个像素位置的聚焦法则,以及被称为全矩阵捕获(FMC)的一组原始基础波形。这样一来,基础波形会得到适当的延迟和求和处理,以在发射和接收过程中以合成方式生成超声声束,并在每个像素位置聚焦。因此,所生成的图像具有“随处聚焦”的特点。全矩阵捕获(FMC)可以获取探头所有成对(发射-接收)单个晶片所生成的所有波形。一般来说,要使用探头的整个孔径,因为对于某种特定的探头来说,这样可以获得尚佳聚焦结果。在这种情况下,获得全矩阵捕获(FMC)数据所需的采集数量等同于探头晶片的数量。全矩阵捕获(FMC)收集到有关探头每个晶片之间声束传播的所有信息,包括被测材料表面的反射以及由缺陷引起的散射等信息。任何类型的相控阵超声检测(PAUT)图像都可以使用全矩阵捕获(FMC)数据重建,其中包括:扇形扫描、平面波成像(PWI)、动态深度聚焦(DDF)等。虽然全矩阵捕获(FMC)生成图像所需的采集数量与相控阵超声检测(PAUT)大致相同,但是要存储单个全矩阵捕获(FMC)数据集,却需要很大的存储容量、很宽的传输带宽,以及很强的处理能力。取决于所用设备的电子器件,获得全矩阵捕获/全聚焦方式(FMC/TFM)结果的速度可能会比相控阵超声检测(PAUT)更慢。
 
  以实验案例说明相控阵超声检测(PAUT)和全聚焦方式(TFM)图像的差异
 
  为了说明相控阵超声检测(PAUT)和全聚焦方式(TFM)成像之间的差别,我们在此介绍一个使用线性相控阵(PA)探头对钢块中垂直分布的几个相同的横通孔(SDH)进行扫查的设置。下面是OmniScan X3探伤仪使用相同的检测配置获得的相控阵超声检测(PAUT)S扫描(a)和全聚焦方式(TFM)图像(b)。在S扫描中,每帧图像都使用*的20毫米聚焦深度获得(红色虚线代表聚焦深度)。处于聚焦区域内的几个横通孔(SDH)以相似的波幅和大小出现在图像中。与较短的聚焦深度相比,使用这种聚焦深度,可以获得更大的具有优质图像分辨率的区域,这也是图中几个横通孔都清晰可见的原因。位于聚焦深度以外较远的横通孔的图像会出现失真现象,且其波幅会大幅降低。因此要使所有横通孔获得更为一致的定量效果,需要使用不同的聚焦深度生成多个图像。在全聚焦方式(TFM)图像(b)中,超声声束在每个像素上聚焦。如您所见,图像中的每个横通孔(SDH)都很清晰鲜明,因此只需一个图像就可以准确地定量分布在更大深度范围内的横通孔。不过,我们可以观察到,位于电子聚焦能力所及的边限处的横通孔有横向失真的现象。这种失真情况是相控阵成像固有的问题,因此也会出现在全聚焦方式(TFM)图像中。探头正在进行全矩阵捕获(FMC)扫查比较相控阵超声检测(PAUT)扫描图与全聚焦方式(TFM)图像。
 
全聚焦方式/全矩阵捕获(TFM/FMC)采集优势特性的总结
 
  全聚焦方式(TFM)和相控阵超声检测(PAUT)之间的主要区别在于构成图像的帧的性质和数量不同。在相控阵超声检测(PAUT)中,帧是一些1维信号或A扫描。后处理工作只包含前端电子设备对信号的实时求和操作,而且在处理的同时,会采集并呈现帧(图像)。与相控阵超声检测(PAUT)不同,全聚焦方式(TFM)的帧是来自每个像素坐标位置的聚焦声束的0维度数据点。因此,要处理的全聚焦方式(TFM)的帧的数量远多于相控阵超声检测(PAUT)的帧的数量。全聚焦方式(TFM)成像需要通过全矩阵捕获(FMC)方式采集数据,以在后处理过程中以合成方式生成聚焦声束。全聚焦方式(TFM)的主要优点是整个图像都以尚佳分辨率显示,而相控阵超声检测(PAUT)图像仅在声束的聚焦区域中具有较高的分辨率。在使用全聚焦方式(TFM)进行检测时值得注意的局限性是相控阵成像技术所带来的电子聚焦能力。
 
上一篇: 专业仪器+先进信息技术,携手实现“中国制造2025”! 下一篇: 了不起!这款显微镜在机加工件测量中表现得“恰如其分”!
提示

请选择您要拨打的电话: